%34
Cebirin Temel Teoremi İçin Dört İspat %15 indirimli Carl Friedrich Gau
Teknik Bilgiler
Stok Kodu
9786054787579
Boyut
13.50x21.00
Sayfa Sayısı
116
Basım Yeri
İstanbul
Baskı
2
Basım Tarihi
2015-10
Çeviren
Gülnihal Yücel
Kapak Türü
Ciltsiz
Kağıt Türü
2. Hamur
Dili
Türkçe

Cebirin Temel Teoremi İçin Dört İspat

18,50TL
12,04TL
%34
Satışta değil
9786054787579
621557
Cebirin Temel Teoremi İçin Dört İspat
Cebirin Temel Teoremi İçin Dört İspat
12.04

Matematikçilerin prensi ve “antik çağlardan beri yaşamış en büyük matematikçi” olarak anılan Carl Friedrich Gauss'un sayılar teorisi, analiz, diferansiyel geometri, jeodezi, manyetizma, astronomi ve optik alanlarında önemli bilimsel katkıları vardır. Bu kitap, okurların Gauss'u doğrudan tanımalarına, gelişimini görmelerine, Gauss hakkında konuşulanların değil, Gauss'un kendisinin ve yapıtlarının duyulmasına olanak sağlamaktadır.

Gauss, 1799'da bitirdiği doktora tezinde cebirin temel teoreminin bir kanıtını sundu. Bu çok önemli teorem, karmaşık sayılar üzerine tanımlanmış her polinomun en az bir kökü olduğunu söyler. Gauss'tan önce pek çok matematikçi bu teoremi kanıtlamayı denemiş, ama hiçbir kanıt genel kabul görmemişti. Gauss'un kanıtına da, o zamanlar henüz kanıtlanmamış olan Jordan eğri teoremini kullandığı için itiraz edildi. Bu itirazlar üzerine Gauss, hayatı boyunca üç değişik kanıt daha sunacak, 1849'daki son kanıtı tüm matematikçilerden kabul görecekti. Gauss bu kanıtlar üzerinde çalışırken, karmaşık sayılar kavramının olgunlaşmasına çok büyük katkıda bulundu.

  • Açıklama
    • Matematikçilerin prensi ve “antik çağlardan beri yaşamış en büyük matematikçi” olarak anılan Carl Friedrich Gauss'un sayılar teorisi, analiz, diferansiyel geometri, jeodezi, manyetizma, astronomi ve optik alanlarında önemli bilimsel katkıları vardır. Bu kitap, okurların Gauss'u doğrudan tanımalarına, gelişimini görmelerine, Gauss hakkında konuşulanların değil, Gauss'un kendisinin ve yapıtlarının duyulmasına olanak sağlamaktadır.

      Gauss, 1799'da bitirdiği doktora tezinde cebirin temel teoreminin bir kanıtını sundu. Bu çok önemli teorem, karmaşık sayılar üzerine tanımlanmış her polinomun en az bir kökü olduğunu söyler. Gauss'tan önce pek çok matematikçi bu teoremi kanıtlamayı denemiş, ama hiçbir kanıt genel kabul görmemişti. Gauss'un kanıtına da, o zamanlar henüz kanıtlanmamış olan Jordan eğri teoremini kullandığı için itiraz edildi. Bu itirazlar üzerine Gauss, hayatı boyunca üç değişik kanıt daha sunacak, 1849'daki son kanıtı tüm matematikçilerden kabul görecekti. Gauss bu kanıtlar üzerinde çalışırken, karmaşık sayılar kavramının olgunlaşmasına çok büyük katkıda bulundu.

  • Yorumlar
    • Yorum yaz
      Bu kitaba henüz kimse yorum yapmamıştır.
Kapat