%10
Soyut Cebir Osman Bizim
Teknik Bilgiler
Stok Kodu
9786059666756
Boyut
16.50x23.50
Sayfa Sayısı
662
Basım Yeri
Bursa
Baskı
1
Basım Tarihi
2017-03
Kapak Türü
Ciltsiz
Kağıt Türü
1. Hamur
Dili
Türkçe

Soyut CebirGruplar, Halkalar, Cisimler ve Galois Teorisine Giriş

116,00TL
104,40TL
%10
Satışta değil
9786059666756
652994
Soyut Cebir
Soyut Cebir Gruplar, Halkalar, Cisimler ve Galois Teorisine Giriş
104.40

Bu kitap, "Soyut Cebir" lisans derslerinde kullanılmak üzere ders kitabı olarak hazırlanmış olmasının yanında bazı bölümlerinden lisansüstü öğrencileri de faydalanabilirler. Matematiğin diğer alanlarında da olduğu gibi, soyut cebirin teoremlerinin ifadesinin anlaşılmasında ispatların verilmesinin önemi büyüktür. Bu nedenle, teoremlerin ispatları olabildiğince açık bir şekilde ifade edilmeye çalışılmış ve kavramlar örnekler ile pekiştirilmiştir. Bununla birlikte, hala okuyucunun anlayamadığı yerlerin bulunabilir veya okuyucunun anlamakta zorlanabileceği yerler olabilir. Ancak çalışmadan ve yorulmadan hiçbir şeyin elde edilemeyeceği de açıktır.

Kitap, beş bölümden oluşuyor gibi görünse de, temel üç bölüm vardır. Bu temel bölümlerde, sırasıyla, ayrıntılı olarak grup teori, halka teori ve cisim teori ele alınmıştır. Grup teori bölümünde, sonlu gruplar, devirli gruplar, permütasyon grupları, normal alt gruplar, bölüm grupları, izomorfizmler, izomorfizm teoremleri, grup serileri, çözülebilir gruplar, sonlu üreteçli abelyen gruplar ve Sylow teoremleri ele alınmıştır. Halka teori bölümünde halkalar ele alınmış ve bunlar birimli, değişmeli, tamlık bölgesi, bölme halkası, cisim olarak sınıflandırılmıştır. Bundan başka, ideal ve idealler yardımıyla bölüm halkaları, kesirler cismi, tek türlü çarpanlara ayırma bölgesi, bölme algoritması, en büyük ortak bölen, asal eleman gibi kavramlar ele alınmıştır. Bu bölümün son kısmında, Euclid bölgeleri ve tamlık bölgeleri üzerinde çarpımsal norm tanımlanarak bazı Diophant denklemlerinin çözümlerine yer verilmiştir. Cisim teori bölümünde cisim genişlemeleri, özel birer cisim genişlemesi olan "Galois genişlemelerrele alınarak grup teori ve cisim teori gibı ıki önemli teorisi arasındaki önemli bir köprü olan Galois teorisine bir giriş yapılmıştır.

  • Açıklama
    • Bu kitap, "Soyut Cebir" lisans derslerinde kullanılmak üzere ders kitabı olarak hazırlanmış olmasının yanında bazı bölümlerinden lisansüstü öğrencileri de faydalanabilirler. Matematiğin diğer alanlarında da olduğu gibi, soyut cebirin teoremlerinin ifadesinin anlaşılmasında ispatların verilmesinin önemi büyüktür. Bu nedenle, teoremlerin ispatları olabildiğince açık bir şekilde ifade edilmeye çalışılmış ve kavramlar örnekler ile pekiştirilmiştir. Bununla birlikte, hala okuyucunun anlayamadığı yerlerin bulunabilir veya okuyucunun anlamakta zorlanabileceği yerler olabilir. Ancak çalışmadan ve yorulmadan hiçbir şeyin elde edilemeyeceği de açıktır.

      Kitap, beş bölümden oluşuyor gibi görünse de, temel üç bölüm vardır. Bu temel bölümlerde, sırasıyla, ayrıntılı olarak grup teori, halka teori ve cisim teori ele alınmıştır. Grup teori bölümünde, sonlu gruplar, devirli gruplar, permütasyon grupları, normal alt gruplar, bölüm grupları, izomorfizmler, izomorfizm teoremleri, grup serileri, çözülebilir gruplar, sonlu üreteçli abelyen gruplar ve Sylow teoremleri ele alınmıştır. Halka teori bölümünde halkalar ele alınmış ve bunlar birimli, değişmeli, tamlık bölgesi, bölme halkası, cisim olarak sınıflandırılmıştır. Bundan başka, ideal ve idealler yardımıyla bölüm halkaları, kesirler cismi, tek türlü çarpanlara ayırma bölgesi, bölme algoritması, en büyük ortak bölen, asal eleman gibi kavramlar ele alınmıştır. Bu bölümün son kısmında, Euclid bölgeleri ve tamlık bölgeleri üzerinde çarpımsal norm tanımlanarak bazı Diophant denklemlerinin çözümlerine yer verilmiştir. Cisim teori bölümünde cisim genişlemeleri, özel birer cisim genişlemesi olan "Galois genişlemelerrele alınarak grup teori ve cisim teori gibı ıki önemli teorisi arasındaki önemli bir köprü olan Galois teorisine bir giriş yapılmıştır.

  • Yorumlar
    • Yorum yaz
      Bu kitaba henüz kimse yorum yapmamıştır.
Kapat